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LETTER TO THE EDITOR 

Equivalence of (d  + 1)-dimensional Ising systems of arbitrary 
spin to a d-dimensional spin-; quantum system 

M B Greent, L SneddonS and R B StinchcombeS 
t Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, UK 
t Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, UK 

Received 16 March 1979 

Abstract. In a certain highly anisotropic limit the s p i n 4  king model in d + 1 dimensions is 
shown to be equivalent to the d-dimensional spin-; king model in a transverse field at zero 
temperature. This result relates, in the highly anisotropic limit, a group of models in the 
same universality class. 

In a special limit of extreme lattice anisotropy, the (d + 1)-dimensional spin-; Ising 
model is identical (Pfeuty 1976, Suzuki 1976, Fradkin and Susskind 1978) to the zero 
temperature limit of the d-dimensional spin-$ Ising model in a transverse field (TIM ( d ) ) .  
The latter system is quantum mechanical with the (continuous) imaginary time being 
identified with the extra dimension of the ( d  + 1)-dimensional system. 

The purpose of this Letter is to point out that universality then suggests? the 
equivalence of the near critical behaviour of the TIM (d) and that of (d + 1)-dimensional 
king models of arbitrary anisotropy (including the isotropic case) and urbirrury spin ; 
and to give an explicit connection between (d + 1)-dimensional spin-S Ising models (IM 
(d + 1, S ) )  in an anisotropic limit and the TIM (d). This connection is not restricted to the 
critical regime. 

The anisotropic limit is such that the IM (d+  1, S )  consists of n weakly coupled 
chains: d-dimensional layers have weak coupling K ,  in the layers and strong coupling 
K, between the layers. The limit K, + CO, Kw + 0 is taken with any fixed A where 

A = ~ s ( K ,  (1) 

The equivalent TIM ( d )  has T/J = A where I' is the transverse field and J is the exchange 
interaction. 

Since the connection is for all S, we thus have an equivalence between the highly 
anisotropic limits of a group of models in the same universality class (the IM (d+ 
1, S) VS). This equivalence was also obtained by Sneddon and Stinchcombe (1978) and 
is complemented by the results of Stoeckly and Scalapino (1975). They show that, in 
the anisotropic limit, the 44 field theory, (which is in the same universality class as the 
Ising models (Wilson and Kogut 1974) also reduces to the spin-$ transverse Ising model 
in one lower dimension. 

t This assumes that the special anisotropic limit does not change the critical behaviour. This limit is discussed 
by Sneddon and Stinchcombe (to be published). 
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Analogous results also obtain for other classes of models. For example, the X-Y 
(plane rotor) model and the periodic Gaussian model (Villain 1975) are in the same 
universality class. In their appropriate highly anisotropic limits these models become 
identical (Green 1978). They are then both described by the Hamiltonian for coupled 
quantum rotors in one lower dimension. In this case the scalings appropriate to the 
anisotropic limits are Ks+  CO, K,  + 0 and fixed A where, for the X-Y model 

A = K,K, 

and for the periodic Gaussian (Villain) model 

These results generalise to other models of the Villain type (Green 1978). 
The connection to be established in this letter could be arrived at by combining the 

results of Fradkin and Susskind (1978) and Sneddon and Stinchcombe (1978). These 
respectively relate the Hamiltonian of the TIM (d) and the transfer matrix of the 
anisotropic IM (d + 1, S)S to the transfer matrix of the anisotropic IM (d + 1, f). In what 
follows, however, the connection will be established directly, by generalising an 
argument of Fradkin and Susskind (1978) and using some single chain properties 
derived by Sneddon and Stinchcombe (1978). 

The reduced Hamiltonian of the spin-f transverse Ising model can be written 

where H is a one-parameter operator given by 

K = pJ, y = pr;  Z(ii) is a sum over nearest neighbour sites in a d-dimensional lattice; 
and U’, U’ are the usual Pauli matrices. 

The transfer matrix between two adjacent d-dimensional layers of n spin-S king 
spins, with couplings as defined above, can be written 

Here a and p label respectively the states of the two layers; the mi take the values -S, 
-S + 1,  . . . , S - 1, S; and Z(ii) is a sum over nearest neighbour pairs in one layer. 
Expanding (3), in the limit defined by (l) ,  and retaining only terms to O(e-2Ks) gives 

where T1(K,) is the transfer matrix of n uncoupled spin-S Ising chains and T 2 =  

$ Sneddon and Stinchcombe (1978) are concerned with the case of d + 1 = 2, but the generalisation to all d of 
the particular result referred to here is immediate. 
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Z(i j ,  ~ f ~ f  where T' is a rank ( 2 s  + 1) matrix given by 

A direct product of single chain matrices a can be used to diagonalise TI. The leading 
order form of the single chain matrix a satisfies (Sneddon and Stinchcombe 1978) 

j =  1 ,2 ;  a# fS 
j z 1,2 ;  a= *S '  

1 / 2  

if ( 2- = alVs  = *al , - s  
2-112 = 

a2.s = i a ~ , - ~  
aj,m = 0 

To leading order, the T*  matrices thus transform to 

In this basis, T1 is a product of diagonal single chain operators whose eigenvalues satisfy 
(Sneddon and Stinchcombe, 1978) 

Ai,A2-1, A 1  - A 2  = 4s e-2Ks(1 + E ) ,  where E + 0 as K,+m (4) 
A, - e-"s where q > 0 for j > 2. 

Thus, in the new basis, the problem decouples into one part, formed from the single 
chain eigenstates with eigenvalues A and A2,  and a second part formed from the other 
single chain eigenstates. Only the first part, T' say, has eigenvalues which do not vanish 
as K, + CO. In the new basis then, to O(e-2Ka), 

where 

Using (4) and (2) then gives, to O(e-2Ks), 

T' = AY (S, K,)I +2S  e-2Ks[H(K, e2Ks/2S) - n l ] .  

Thus the Hamiltonians giving the thermodynamics and correlation functions of the 
anisotropic Ising models, for any S, are related to the Hamiltonian giving the zero 
temperature dynamics and correlation functions of the quantum model. In particular 
the time evolution given by the Hamiltonian (2) is equivalent to the spatial decay of 
correlations in the strongly coupled direction of the classical model, in the limit given by 
(l), for any value of A. Another consequence of this relation is that the criticality of the 
d-dimensional transverse Ising model at a particular value A J d )  of T / J  gives, using ( l ) ,  
the leading order form of the critical curve for the anisotropic (d+ 1)-dimensional 
spin-S Ising model. This result was given previously (Sneddon and Stinchcombe 1978) 
for the special case of d + 1 = 2. 
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